skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Naifeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Guruswami, Venkatesan (Ed.)
    This paper considers elections in which voters choose one candidate each, independently according to known probability distributions. A candidate receiving a strict majority (absolute or relative, depending on the version) wins. After the voters have made their choices, each vote can be inspected to determine which candidate received that vote. The time (or cost) to inspect each of the votes is known in advance. The task is to (possibly adaptively) determine the order in which to inspect the votes, so as to minimize the expected time to determine which candidate has won the election. We design polynomial-time constant-factor approximation algorithms for both the absolute-majority and the relative-majority version. Both algorithms are based on a two-phase approach. In the first phase, the algorithms reduce the number of relevant candidates to O(1), and in the second phase they utilize techniques from the literature on stochastic function evaluation to handle the remaining candidates. In the case of absolute majority, we show that the same can be achieved with only two rounds of adaptivity. 
    more » « less